pvdeg.collection.calculate_jsc_from_tau_cp#

pvdeg.collection.calculate_jsc_from_tau_cp(tau, wafer_thickness, d_base, s_rear, generation, depth, w_emitter=0.36, l_emitter=15, d_emitter=5, s_emitter=10000.0, xp=2.4e-07)[source]#

Returns cell Jsc given lifetime and cell parameters

Jsc is calculated via integrating collection probability and optical generation profiles through the wafer depth. Includes contribution of the emitter, depletion region (assumes CP = 1 in the depletion region), and base.

Parameters:
  • tau (numeric) – Carrier lifetime [us].

  • wafer_thickness (numeric) – Wafer thickness [um].

  • d_base (numeric) – Minority carrier diffusivity [cm^2/Vs].

  • s_rear (numeric) – Rear surface recombination velocity [cm/s].

  • generation (array-like) – array of generation current G(z), e.g. from PVlighthouse OPAL2 [cm^3/s] [1].

  • depth (array-like) – array of wafer depth 0-z [um].

  • w_emitter (numeric, default 0.36) – Emitter thickness [um].

  • l_emitter (numeric, default 15) – Minority carrier diffusion length of the emitter [um].

  • d_emitter (numeric, default 5) – Minority carrier diffusivity in the emitter [cm^2/s].

  • s_emitter (numeric, default 1e4) – Front surface recombination velocity [cm/s].

  • xp (numeric, default 0.00000024) – width of the depletion region [m]. Treated as fixed width, as it is very small compared to the bulk, so injection-dependent variations will have very small effects.

Returns:

jsc (numeric) – Short circuit current of the solar cell [mA/cm^2].

Notes

Default emitter parameters w, l, d, and s are supplied, but users may wish to experiment to find the most suitable parameters to model different cell types. Default values are adapted from [2] and [3].

Pros of this approach

can account for e.g. lighttrapping via the generation profile

Cons of this approach

requires a generation profile

Future work:

include default generation and depth profile.

References

cells,” in 2012 38th IEEE Photovoltaic Specialists Conference, IEEE, 2012, pp. 000265–000271. doi: 10.1109/PVSC.2012.6317616.

IEEE Journal of Photovoltaics, vol. 5, no. 4, pp. 1250–1263, Jul. 2015, doi: 10.1109/JPHOTOV.2015.2430016.

efficiency for solar cells,” Solar Energy, vol. 82, no. 2, pp. 106–110, Feb. 2008, doi: 10.1016/j.solener.2007.07.010.